


HOW TO PRODUCE THESE MAPS
IN AN “OPTIMAL’” MANNER?

® COLOR CODES TEMPERATURE (INTENSITY), HERE £100UK
® TEMPERATURE TRACES GRAVITATIONAL POTENTIAL AT THE TIME OF
RECOMBINATION, WHEN THE UNIVERSE WAS 372 000 14000 YEARS OLD

@ THE STATISTICAL ANALYSIS OF THIS MAP ENTAILS DETAILED COSMOLOGICAL
INFORMATION




CMB ANALYSIS SCHEME

® THE KEY ESTIMATOR, I.E. THE PLACE WHERE THEORY MEETS EXPERIMENTS, IS THE
ANGULAR POWER SPECTRUM SINCE BOTH THE SIGNAL AND THE NOISE ARE

GAUSSIAN
Sl dsigher o
<Tp1 TP2> ) Z ?CEPE (COS Gl nPQ)
14

@ THIS SET SOME BASIC EXPERIMENTAL REQUIREMENTS: HIGH RESOLUTION, LOW
NOISE LEVEL, MULTI-FREQUENCY, REDUNDANCY, POLARIZATION

@ ANALYSIS SCHEME

(1) MEASUREMENTS ARE RECORED AS THE INSTRUMENT SCANS THE SKY: TIME

ORDERED DATA (TOD), D"
(2)PRE-PROCESS TOD (DEGLITCH, DECORRELATE, POINTING, CALIBRATION)
(3)FROM THEM WE WANT TO ESTIMATE THE TIME DOMAIN NOISE PROPERTIES

(4)WE THEN WANT TO DEDUCE MAPS, Xz, AND THEIR ERRORS

(5)WE WANT TO CHARACTERIZE STATISTICALLY THESE MAPS, E.G. POWER
SPECTRUM, BISPECTRUM,... AND ITS ERRORS

(6)FROM THESE CHARACTERISTICS WE WANT TO INFER COSMOLOGICAL
CONSTRAINTS




SPECIFIC GOALS

@ TO COVER
® THE BASIC MATHEMATICAL FORMALISMS
® THE ALGORITHMS AND THEIR SCALING BEHAVIOR
® SOME EXAMPLE IMPLEMENTATION ISSUES

@ TO CONSIDER HOW TO EXTRACT THE MAXIMUM OF
INFORMATION FROM THE DATA, SUBJECT TO PRACTICAL
COMPUTATIONAL CONSTRAINTS

® TO ILLUSTRATE SOME OF THE COMPUTATIONAL ISSUES
FACED WHEN VERY ANALYZING LARGE DATA SETS
(PLANCK, ACT, SPIDER)




FEW NUMBERS

o g PR axima
* ¢ . "

1.5 105 pix.
7!

WMAP 2003-...
12 106 pix.
5

SKy Loverage

PLANCK 2008 Spider 2009-2010
. 4 105 pix.

107 pix. 14’

1.5’

3000 channels

54 channels 8TB dataset




VWHY DO WE PROCE]

—

=D THTS WA

@ THE KEY REASON IS DATA COMPRESSION AS ILLUSTRATED BY
THE PLANCK EXAMPLE

@ TIME-ORDERED DATA

#SAMPLES=# DETECTORS X SAMPLING RATE X DURATION
~ 70 X 200 HZ X 18 MONTHS
~ 6 10! sAMPLES

@ PIXELIZED SKY MAPS (WITH HEALPIX)

#PIXELS = # COMPONENTS X SKY FRACTION X 12Ngpe?

~(83-6) X1 X 12 x 40962
~ 6-12 108 PIXELS

® POWER SPECTRUM

#BINS = # SPECTRA X #MULTIPOLES / BIN RESOLUTION
~ 66X (B3X10% /1

~ 1.8 104 MULTIPOLES

2 WE WANT TO AVOID ANY INFORMATION LOSS AT ANY STAGE




LIKELIHOOD CHAIN

®@ WE WILL FOLLOW A BAYESIAN APPROACH

® WE ARE ULTIMATELY INTERESTED IN THE POSTERIOR PROBABILITY
RSO e Endl el )
@ USING THE BAYES THEOREM, WE CAN WRITE
R D)
P(D|1)
ede R ) ap

P(T|D,T)

® THE ESTIMATORS THUS DEFINED ARE MAXIMUM LIKELIHOOD ESTIMATORS
P (O, Neen Gzl | &2, 1) =
L(d | 2%, Negn I) L(2% | 60,0, New I) Z(%, | ©, Nigs, I)
x PO, Ny | 1)) P(d | I).

@ ADEQUATE FORMULATION BUT HIDE ALL THE PRACTICAL COMPLEXITIES...
MORE ON THAT LATER...




FORMALISM - |

® CONSIDER DATA CONSISTS OF NOISE AND SIGNAL

dt — Ny _I_St — Ny —l_AtpSp

® POINTING MATRIX, A, ENCODES THE WEIGHT OF EACH
PIXEL P IN EACH TIME STEP T. IN PRINCIPLE A
ENCOMPASS THE FULL BEAM RESPONSE AS WELL AS THE
CALIBRATION

® IF WE RESTRICT OURSELVES TO TOTAL POWER
EXPERIMENT (NOT DIFFERENTIAL LIKE WMAP) AND WE
AIM AT RECONSTRUCTING THE BEAM CONVOLVED SKY,
THEN

S s e pixelt D

A= .

otherwise

® NOTE THAT IN THIS CASE S IS THIS ‘“BEAM” AND “PIXEL”

SMOOTHED




FORMALISM - |I

® THE STATISTICAL QUESTION WE AIM AT ANSWERING IS HOW TO BUILD
THE BEST ESTIMATE OF THE SKY, S, GIVEN THE TIME STREAM, D-

® ASSUMING GAUSSIAN INSTRUMENTAL NOISE (THE ONLY ASSUMPTION
HERE), WE CAN WRITE THIS LIKELIHOOD AS

—2InP (d|s) = n/ N;;!n, + Tr[InN, ]

@ WHERE THE TIME DOMAIN NOISE COVARIANCE MATRIX IS
Nlﬂz =< ntlntz >

® ASSUMING THAT THE NOISE IS STATIONARY AND THE NOISE
CORRELATION LIMITED IN TIME, WE HAVE

w=f(t—n]) anp f(nu—n))=0 if |n—n|>1




NOISE ESTIMATION

® YOU NEED AN APPROACH TO ESTIMATE THE NOISE. IT CAN BE DONE
AS FOLLOWS
7)

FFT|n,])

WE TR b i

(1)ASSUME TOD IS PURE NOISE, I.E. Dr=Nr

(2)SOLVE FOR THE MAP, Dp~Sp

(3)SUBTRACT THE EVALUATED SIGNAL FROM THE DATA, Nr=Dp-A1rSe
(4)ITERATE

® SHOWN TO CONVERGE TO BE A SLIGHTLY BIAS ESTIMATOR (FERREIRA
& JAFFE OO, PRUNET O1, STOMPOR 06)




FORMALISM-III

@ MAXIMIZING THE PREVIOUS LIKELIHOOD OVER SIGNALS, WE
OBTAIN THE MAXIMUM LIKELIHOOD MAP ESTIMATOR

(At1 PlN 4 1I2AI2P2) AlzpzN i3 dt

® SIMPLE GENERALIZED % SOLUTION

® ITS NOISE COVARIANCE PROPERTIES ARE

Np1p2 Z (AtlpthltzAtzpz)

@ TAKEN TOGETHER, THIS IS A COMPLETE DESCRIPTION OF
THE DATA

@ BASICALLY, MM PROBLEM IS A SIMPLE INVERSION PROBLEM




SOME NUMBERS

SYMBOL DESCRIPTION PLANCK
Nt NUMBER OF SAMPLES 5 x 101
7- NOISE BANDWIDTH o(10%)
Np NUMBER OF PIXELS 6 X 108
NS NUMBER OF SPECTRA 6

lma:v MAXIMUM MULTIPOLE 3x 108
NUMBER OF SPECTRAL BINS 2 x 104

NUMBER OF ITERATIONS

NUMBER OF REALIZATIONS




COMPUTATIONAL CONSTRAINTS

1 GHZ PROCESSOR RUNNING AT 100% EFFICIENCY FOR 1 DAY
PERFORMS O(10'4) OPERATIONS.

®1 GBYTE OF MEMORY CAN HOLD O(108%) ELEMENT VECTOR, OR
O(10%4 X 104) MATRIX, IN 64-BIT PRECISION.

@YOU CAN READ AT TOOMBYTE/S, I.E. 22HR FOR SPIDER DATA
SET

@PARALLEL (MULTIPROCESSOR) COMPUTING INCREASES THE
OPERATION COUNT AND MEMORY LIMITS.

@CHALLENGES TO COMPUTATIONAL EFFICIENCY & SCALING:
@LOAD BALANCING (WORK & MEMORY)
@DATA-DELIVERY, INCLUDING COMMUNICATION & 1/0O




BT GORITHMS - 1

® WE WANT TO SOLVE THE SYSTEM:

EQUATION NAIVE OP. COUNT
Zp — Az;th;,l dt/ MZ
N2t = (AL NG Avy) NE N,
Npp = (Nz;})_l sz’
dp = Npp 2pr Ny

Ec. (5X 10'1)2 X (6 x 108) ~ 2 X 1032 FOR PLANCK...




ALGORITHMS - Il

@ EXPLOIT THE STRUCTURE OF THE MATRICES... SEMI-BRUTE
FORCE

® POINTING MATRIX IS SPARSE
@ INVERSE NOISE CORRELATION MATRIX IS BAND-TOEPLITZ

@ ASSOCIATED MATRIX-MATRIX & -VECTOR OPERATIONS REDUCED

FROM N:2N; AND N2 TO N:T, E.G. (5 X 10'1)x10'4~ 5 X 105
FOR PLANCK, I.E. 50 1GHZ CPU FOR ONE YEAR...

@ MADCAP PACKAGE BY BORRILL & STOMPOR 1999




ALGORITHMS - |1l

® REPLACE EXPLICIT MATRIX INVERSION WITH AN ITERATIVE
SOLVER (E.G. PRECONDITIONED CONJUGATE GRADIENT) USING
REPEATED MATRIX-VECTOR MULTIPLICATIONS

IRl et

PP w109

BREDUCING THE SCALING FROM Ng3 TO N|Nz2

@DEPENDS ON THE REQUIRED SOLUTION ACCURACY AND THE
QUALITY OF THE PRECONDITIONER (WHITE NOISE WORKS WELL),

E.G. 30 X (6 X 108)2 ~ 10'° FOR PLANCK.




ALGORITHMS - IV

@ LEAVE THE INVERSE PIXEL-PIXEL NOISE MATRIX IN IMPLICIT FORM AND
USE ITERATIVE METHOD (JAcoBI, PCG, MULTIGRID..)

(Atlpl t1t2At2p2) P At3p1 t3t4dt4

@ NOW EACH MULTIPLICATION TAKES N:T OPERATIONS IN PIXEL SPACE

OR N;LOGT IN FOURIER SPACE, E.G. 30 X (5x10'") x Lo 104 FOR
PLANCK

@ BUT THIS GIVES NO INFORMATION ABOUT THE PIXEL-PIXEL MATRIX
NOISE CORRELATION MATRIX REQUIRED FOR FURTHER STAGE,
ALTHOUGH YOU CAN FILL THE WEIGHT MATRIX EASILY

WRIGHT 96, PRUNET ET AL. OO0, DORE ET AL. O1, NATOLI ET AL. O1,
STOMPOR ET AL. 02, ASHDOWN ET AL. 06




JACOBI SOLVER

® TO SOLVE FOR VA e —=l

(4
E a;j = b;
7=1

® I[F WE ASSUME ALL THE X, (I£J) ARE
FIXED THEN WE CAN SOLVE FOR X

= Y ayT)/a

J71

® WHICH SUGGESTS THE FOLLOWING

ITERATIVE SCHEME e ()
iy o= Zaz’j% )/ i

J71

® ORDER OF OPERATIONS IRRELEVANT




WHICH ITERATIVE METHODS?

® JACOBI METHOD:
® THE MOST STANDARD
® GUARANTEED CONVERGENCE....
@ BUT SLOW...

= o 0
@®ARCHEOPS SIMULATIONS _ _!

@SLOW LARGE SCALE CONVERGENCE




MULTIGRID METHOD?

® THIS SUGGESTS TO SOLVE FOR THE MAPS AT LOWER
RESOLUTION WHERE WE CAN SOLVE FOR THE MAPS EXACTLY BY
ITERATING MANY TIMES AND INJECT THE SOLUTION AT HIGHER
RESOLUTION

® NATURAL RECURSIVE JACOBI ALGORITHM

Speed up > 10
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DORE ET AL. O1




Residuals

Z=Norm ot Rasiduoly

g
8
=]

Rumber of ferotions




PRECONJUGATE CONJUGATE GRADIENT

e —0)

@ WE DEFINE THE RESIDUALS AT AN ITERATION K AS

plRii=tp = Ay &)

® WE UPDATE THE SOLUTION XX BY MOVING IN THE DIRECTION PXK
oy = T(i—l)TT(i—l)/(p(i)TAp(i))

@ THE RESIDUALS ARE UPDATED AS

@ e S k)
® THE DIRECTION PX (AND AMPLITUDE O0) ARE ORTHONORMAL TO ALL
PREVIOUS APK! () () (i—1)
A wtil 438 11 1—
Difh=pbt Oy =D 1
8; = pOTpE) [nG-DT @1
® THE NEW CHOICE X' BELONGS TO X°+SPAN{R°+...A""TR°} AND
MINIMIZES ' 2 ' 3
(2 — )T A(zD — 2)

@ WELL STUDIED METHODS AND CONVERGES AS A CONDITION NUMBER




EXTENSION TO POLARIZATION

® FOR POLARIZATION DATA THE SIGNAL CAN BE WRITTEN IN TERMS OF THE
I, Q & U STOKES PARAMETERS AND THE ANGLE 00 OF THE POLARIZER

RELATIVE TO SOME CHOSEN COORDINATE FRAME
i
(74 + cos 2aiq; + sin 20Uy ) = e slliBg
U

]
St—§

WHERE A;p NOW HAS 3 NON-ZERO ENTRIES PER ROW.

@ WE NEED AT LEAST 3 OBSERVATION-ANGLES TO SEPARATE I, Q & U.




EXTENSION TO SYSTEMATICS

@ IF THE DATA INCLUDES A SKY-ASYNCHRONOUS CONTAMINATING
SIGNAL (EG. MAXIMA’S CHOPPER-SYNCHRONOUS SIGNAL)

S
q

@ THIS CAN BE EXTENDED TO ANY NUMBER OF CONTAMINANTS,
INCLUDING RELATIVE OFFSETS BETWEEN SUB-MAPS

@ EASY EXTENSION TO (CORRELATED) MULTI-DETECTORS SYSTEM
(SEE E.G. BLAST MAPS, PATANCHON ET AL. 07 )

1 1
( dy \ ( ng \
1 1 1
dé” ngn Agp
dl == ni + Atp ,flj‘p
) 2
dy, e




B HORTCUTS?

® E.G. DESTRIPING FOR PLANCK
@ ALTERNATIVE DESCRIPTION OF THE DATA

dt — Atpxp - T ¢
dt — Atpajp =F thcq -+ Ny

EE
Po\m‘f Po\ar"
MADAM MADAM
Springtide Springtide
5 5
CDF Madam ¢1.2 s baseline)> - CDF binned difference I map (Nside 512> MaPEPMEA yEeEHE
S g \ \
s s | VWA
] 5 (WA ]
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ASHDOWN ET AL. O6




CONCLUSIONS

@ THE MAP-MAKING PROBLEM IS WELL DEFINED FORMALLY BUT
CHALLENGING PRACTICALLY

® OPTIMAL SOLUTION IS EXPANSIVE BUT :
® THE MAXIMUM-LIKELIHOOD MAP ONLY CAN BE CALCULATED IN
N;N;LOG(T) OPERATIONS - O(10'4) FOR PLANCK.
® THE SPARSE INVERSE PIXEL-PIXEL CORRELATION MATRIX CAN BE
CALCULATED IN N:T OPERATIONS - O(10'%) FOR PLANCK.
® A SINGLE COLUMN OF THE PIXEL-PIXEL CORRELATION MATRIX CAN

BE CALCULATED (JUST LIKE A MAP) IN N,N;LOG(T) OPERATIONS -
O(10'%) FOR PLANCK.

@ THEY ARE ALWAYS SHORT-CUTS (HIGH-PASS FILTERING AND SIMPLE
COADDITION, DESTRIPING, ETC.) NOT NECESSARILY TOO UNOPTIMAL







