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How to produce these maps 
in an “optimal” manner?

Color codes temperature (intensity), here ±100μK
Temperature traces gravitational potential at the time of 
recombination, when the Universe was 372 000 ±14000 years old 
The statistical analysis of this map entails detailed cosmological 
information



The key estimator, i.e. the place where theory meets experiments, is the 
angular power spectrum since both the signal and the noise are 
Gaussian

This set some basic experimental requirements: high resolution, low 
noise level, multi-frequency, redundancy, polarization

Analysis Scheme

(1)Measurements are recored as the instrument scans the sky: time 
ordered data (TOD), dtν

(2)Pre-process TOD (deglitch, decorrelate, pointing, calibration)
(3)From them we want to estimate the time domain noise properties
(4)We then want to deduce maps, xpν, and their errors
(5)We want to characterize statistically these maps, e.g. power 

spectrum, bispectrum,... and its errors
(6)From these characteristics we want to infer cosmological 

constraints

CMB analysis scheme
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Specific goals

To cover 
The basic mathematical formalisms
The algorithms and their scaling behavior
Some example implementation issues 

To consider how to extract the maximum of 
information from the data, subject to practical 
computational constraints

To illustrate some of the  computational issues 
faced when very analyzing large data sets 
(Planck, ACT, Spider)



Few numbers 
1992
103 pix.
7o

1.5 105  pix.
7’

Boomerang 2001 Maxima 2001

PLANCK 2008
107  pix.
1.5’
54 channels

WMAP 2003-....
12 106 pix.
5’

Spider 2009-2010
4 105 pix.
14’
3000 channels
8TB dataset

Spider Project Description

ration flight, we are not relying on the ULDB
option as our baseline.

Instead, for our first LDB flight, we plan to fly
on a 40 million cubic-foot conventional balloon.
In support of this proposal, CSBF has simulated
in detail the flight track and altitude variations
for the Spider payload mass launched from Al-
ice Springs in early December. Of 75 flights,
69 (92%) returned to Australia in 25.0 ± 4.8
days, while 2 narrowly missed the continent and
would have been easily recovered off the coast
(Spider is designed for a water recovery). The
remaining 4 (5%) went outside the bounds (be-
tween the equator and ∼ 40◦S) of the simula-
tion. A success rate of 95% is as good as bal-
looning gets.

Despite these large dirunal variations, atmo-
spheric emission in the carefully designed Spi-

der bands remains negligible in comparison
to the CMB over the entire range of altitude,
and will not impact sensitivity. We note that
Boomerang 03 observed over this range of al-
titude without any impact on the result at the
same per-beam depth which will be achieved
with Spider .

The sky coverage for an Alice Springs launch
is shown in Figure 5. The coverage has been
calculated assuming that data is acquired only
when the Sun is below an elevation of 4◦ above
the horizon, and that the payload remains at
constant latitude of −23◦ S during a 20-day
flight. Departures from this latitude increase
sky coverage and improve cross-linking; Fig-
ure 5 thus represents the minimum sky coverage
that would be obtained.

2.4 Foregrounds

Polarized emission from astrophysical fore-
grounds will set the ultimate limit to detecting
primordial B-mode polarization at large angu-
lar scales. Spider is carefully designed to have
the best possible prospect of distinguishing the
CMB from foregrounds.

The rms E-mode and tensor B-mode signals
for the range ! = 7 to ! = 120 for r =
0.1 and τ = 0.1 are roughly 700 nKcmb and
100 nKcmb, respectively. The per-pixel rms in-

Figure 5: Spider sky coverage. The top panel
shows the sky coverage of 16 detectors spread over
the array’s range in elevation (30◦ to 50◦ from the
horizon). Nearly all of the coverage is repeated each
night of the ∼ 25 day flight, providing good cross-
linking of the map. The outlined areas indicate the
fields targeted during the 2003 flight of Boomerang
. Spider will map most of the useful sky accessible
from either Antarctica or Chile. The lower two pan-
els show the IRAS 100 µm map of Galactic dust,
and the WMAP 3rd year release Syncrotron map.

strumental noise in this !-range (2 degree pix-
els) is 160 nKcmb. The rms foreground signal is
roughly 1 µKcmb, so a reduction by a factor of
10 is needed to make a precise E-mode measure-
ment and to detect B-modes.

Polarized Synchrotron and Dust Thermal
Emission

Synchrotron radiation is emitted by energetic
electrons accelerated in supernova remnant
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Why do we proceed this way?
The key reason is data compression as illustrated by 
the planck example

Time-ordered data
#samples=# detectors x sampling rate x duration

~ 70 x 200 Hz x 18 months
~ 6 1011 samples

Pixelized sky maps (with Healpix)
#Pixels = # components x sky fraction x 12Nside2

~ (3-6) x 1 x 12 x 40962

~  6-12 108 pixels

Power Spectrum 
#Bins = # Spectra x #multipoles / Bin resolution
          ~   6 x (3 x 103) / 1
          ~   1.8 104 multipoles

We want to avoid any information loss at any stage



We will follow a Bayesian approach

We are ultimately interested in the posterior Probability

Using the Bayes theorem, we can write

The estimators thus defined are Maximum Likelihood estimators

Adequate formulation but hide all the practical complexities... 
more on that later...

Likelihood Chain

P(T |D, I) =
P(T |I)L(D|I, T )

P(D|I)
∝ P(T |I)L(D|I, T )

P(Θ, C!, xp, Ntt′ |dν
t , I)



Consider data consists of noise and signal

Pointing Matrix, A, encodes the weight of each 
pixel p in each time step t. In principle A 
encompass the full beam response as well as the 
calibration
 If we restrict ourselves to total power 
experiment (not differential like WMAP) and we 
aim at reconstructing the beam convolved sky, 
then

Note that in this case s is this “beam” and “pixel” 
smoothed

Formalism - I

dt = nt + st = nt +At psp

At p =
{

1 if n̂t ∈ pixel p
0 otherwise



Formalism - II

−2lnP(d|s) = nT
t1N

−1
t1t2 nt2 +Tr[lnNt1t2]

Nt1t2 =< nt1nt2 >

N−1
t1t2 = f (|t1− t2|) f (|t1− t2|) = 0 if |t1− t2| > tdand

The statistical question we aim at answering is how to build 
the best estimate of the sky, ŝ, given the time stream, dt

Assuming Gaussian instrumental noise (the only assumption 
here), we can write this likelihood as

where the time domain noise covariance matrix is 

Assuming that the noise is stationary and the noise 
correlation limited in time, we have 



You need an approach to estimate the noise. It can be done 
as follows

(1)Assume TOD is pure noise, i.e. dt=nt

(2)Solve for the map, dp~sp

(3)Subtract the evaluated signal from the data, nt=dd-Atpsp

(4)Iterate

Shown to converge to be a slightly bias estimator (Ferreira 
& Jaffe 00, Prunet 01, Stompor 06)

Noise estimation

N−1(∆) = FFT−1(
1

FFT [nt])2)



Formalism-III

Maximizing the previous likelihood over signals, we 
obtain the maximum likelihood map estimator

Simple Generalized χ2 solution

Its noise covariance properties are

Taken together, this is a complete description of 
the data 

Basically, MM problem is a simple inversion problem

ŝp = (AT
t1 p1

N−1
t1t2 At2 p2

)−1AT
t2 p2

N−1
t2t3 dt3

Np1 p2 = (AT
t1 p1

N−1
t1t2 At2 p2)

−1



Some Numbers

Symbol Description Planck

Number of samples 5 x 1011

Noise bandwidth O(104)

Number of pixels 6 x 108

Number of spectra 6

Maximum multipole 3 x 103

Number of spectral bins 2 x 104

Number of iterations -

Number of realizations -



Computational Constraints

1 GHz processor running at 100% efficiency for 1 day 
performs O(1014) operations.

1 Gbyte of memory can hold O(108) element vector, or 
O(104 x 104) matrix, in 64-bit precision.

You can read at 100MByte/s, i.e. 22hr for Spider data 
set

Parallel (multiprocessor) computing increases the 
operation count and memory limits.

Challenges to computational efficiency & scaling:
load balancing (work & memory)
data-delivery, including communication & I/O



Algorithms - I

We want to solve the system:

 Eg. (5 x 1011)2 x (6 x 108) ~ 2 x 1032 for Planck...

Equation Naive Op. Count



algorithms - II

Exploit the structure of the matrices... semi-brute 
force

Pointing Matrix is sparse
inverse noise correlation matrix is band-toeplitz

Associated matrix-matrix & -Vector operations reduced 
from Nt2Np and Nt2 to Ntτ, e.g. (5 x 1011)x1014~ 5 x 1015 
for Planck, i.e. 50 1GHz CPU for one year...

MADCAP package by Borrill & Stompor 1999 



Algorithms - III

 Replace explicit matrix inversion with an iterative 
solver (e.g. preconditioned conjugate gradient) using 
repeated matrix-vector multiplications

reducing the scaling from  Np3 to NiNp2

depends on the required solution accuracy and the 
quality of the preconditioner (white noise works well), 
e.g. 30 x (6 x 108)2 ~ 1019 for Planck. 

N−1
p1p2

di
p2

= zp



Leave the inverse pixel-pixel noise matrix in implicit form and 
use iterative method (Jacobi, PCG, Multigrid..)

Now each multiplication takes Ntτ operations in pixel space 
or Ntlogτ in Fourier space, e.g. 30 x (5x1011) x log 104 for 
Planck

But this gives no information about the pixel-pixel matrix 
noise correlation matrix required for further stage, 
although you can fill the weight matrix easily

Algorithms - IV

(
AT

t1p1
N−1

t1t2At2p2

)
sp2

= AT
t3p1

N−1
t3t4dt4

Wright 96, Prunet et al. 00, Doré et al. 01, Natoli et al. 01, 
Stompor et al. 02, Ashdown et al. 06



To solve for 

If we assume all the xj (i≠j) are 
fixed then we can solve for xi 

Which suggests the following 
iterative scheme

Order of operations irrelevant

Jacobi solver
Ax = b

n∑

j=1

aij = bi

x(k)
i = (bi −

∑

j !=i

aijx
(k−1)
j )/aii

xi = (bi −
∑

j !=i

aijxj)/aii



Which iterative methods?
Jacobi method: 

the most standard
Guaranteed convergence....
but slow...

But why so slow?

Archeops simulations
Slow large scale convergence



Multigrid method?
This suggests to solve for the maps at lower 
resolution where we can solve for the maps exactly by 
iterating many times and inject the solution at higher 
resolution
Natural recursive jacobi algorithm

Speed up > 10

Doré et al. 01



Preconditioned Conjugate Gradient

PCG is guaranteed to converge
Actually faster in terms of # iterations and also in 
terms of time per iteration



Preconjugate Conjugate Gradient

We define the residuals at an iteration k as

We update the solution xk by moving in the direction pk

The residuals are updated as 

The direction pk (and amplitude α) are orthonormal to all 
previous Apk-1

The new choice xi belongs to x0+span{r0+...Ai-1r0} and 
minimizes 

Well studied methods and converges as A condition number

Ax = b

r(k) = b−Ax(k)

x(k) = x(k−1) + αkp(k)

r(k) = r(k−1) − αkAp(k)

αi = r(i−1)T r(i−1)/(p(i)T Ap(i))

p(i) = r(i) + βi−1p
(i−1)

(x(i) − x̂)T A(x(i) − x̂)

βi = r(i)T r(i)/r(i−1)T r(i−1)



Extension to Polarization

For polarization data the signal can be written in terms of the 
i, q & u Stokes parameters and the angle α of the polarizer 
relative to some chosen  coordinate frame

where Atp now has 3 non-zero entries per row.

We need at least 3 observation-angles to separate i, q & u.

st = 1
2 (it + cos 2αtqt + sin 2αtut) = Atp




i
q
u





p



If the data includes a sky-asynchronous contaminating 
signal (eg. MAXIMA’s chopper-synchronous signal)

This can be extended to any number of contaminants, 
including relative offsets between sub-maps

Easy extension to (correlated) multi-detectors system 
(see e.g. Blast maps, Patanchon et al. 07 )

Extension to systematics





d1
1

...
d1

tn

d2
1

...
d2

tn

...





=





n1
1

...
n1

tn

n2
1

...
n2

tn

...





+




A1

tp

A2
tp

...



xp

dt = nt + Atpxp + Btqxq = nt +
[
AtpBtq

](
sp

xq

)



Shortcuts?
E.g. destriping for Planck
Alternative description of the data

18 M. A. J. Ashdown et al.: Making Sky Maps from Planck Data

Fig. 2. Spectra of residuals for the polarization simulations with noise in the cycloidal scanning strategy.

dt = Atpxp + nt

dt = Atpxp + Btqcq + nt

Ashdown et al. 06



Conclusions

The map-making problem is well defined formally but 
challenging practically

Optimal solution is expansive but :

The maximum-likelihood map only can be calculated in 

NiNtlog(τ) operations - O(1014) for Planck.

The sparse inverse pixel-pixel correlation matrix can be 

calculated in Ntτ operations - O(1015) for Planck.

A single column of the pixel-pixel correlation matrix can 
be calculated (just like a map) in NiNtlog(τ) operations - 
O(1014) for Planck.

they are always short-cuts (high-pass filtering and simple 
coaddition, destriping,  etc.) not necessarily too unoptimal



Fin


