A tutorial overview of one experiment:

—_— WMAP

During today’s talk, WMAP will
survey 1/3 of the sky

(again).
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*Choose a mature technology--no inventions needed to make
WMAP work. It was 5 years from proposal to launch.

*Focus on aspects of the experiment which MUST be done on a
satellite.

*No cryogenics or active thermal control.

*Make the full data pipeline early in the project, and use it to
understand the impact on our systematic error budget of all
design decisions.

*Have a very small science team so that everyone talks to
everyone.



WMAP was designed to produce all sky maps with the
following properties:

0.2 degree angular resolution

*Accuracy on all scales above 0.2 degrees
Minimally correlated pixel noise

Polarization sensitivity

Calibration accuracy <0.5%

Sensitivity levels <20uK for 393,216 sky pixels

«Systematic errors < 5% of random variance on all angular
scales.



These goals lead to a design with:

A symmetric differential instrument
*Rapid large sky-area scans

«Several (4) switching/modulation periods
e|Interconnected redundant observations

*An L2 orbit to minimize sun/moon/earth effects and provide
thermal stability

Sidelobe response which keeps the Sun/Moon/Earth below 1 uK
*Five bands to allow separation of galactic and cosmic signals
Passive thermal control and a constant sun angle

e Calibration in flight based on the CMB dipole and its annual
modulation by WMAP’s orbit, and

*Precision temperature sensing of the instrument.
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Figure 1.1: Spacecraft Overview. View of the spacecraft in the deployed configuration with
major components labeled. The primary and secondary reflectors as well as the two thermal
radiators are clearly visible in the upper portion of the image. The cold and warm section of
the radiometers are housed in the FPA and RXB respectively and are locate in the core of
the spacecraft under the primary reflectors. All the support electronics (AEU, DEU, PDU,
MAC, LMAC), gyros, star-trackers, and reactions wheels are mounted on the hexagonal hub
at the base of the spacecraft. While at L2, the optics, instrument and support electronics
are constantly in the shade of the solar array and never exposed to solar radiation.



Table 1. Approximate Observational Properties by Band

[tem K-Band Ka-Band Q-Band V-Band W-Band
Wavelength, A (mm) 13 9.1 7.3 4.9 3.2
Frequency, v (GHz) 22.8 33.0 40.7 60.8 03.5
Ant./therm. conversion factor, AT/AT, 1.014 1.029 1.044 1.100 1.251
Noise, oo (mK) o = agN,,./> 1.424 1.449 2.211 3.112 6.498
Beam width 0(°FWIHM) 0.82 0.62 0.49 0.33 0.21
No. of Differencing Assemblies 1 1 2 2 4
No. of Radiometers 2 2 4 4 8

No. of Channels 4 4 8 8 16




The WMAP frequency bands were
chosen to lie near the minimum in
foreground contamination and to
provide enough frequency
coverage and resolution to
recognize and remove galactic
emission.
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WMAP with mm resolution and km resolution:

Goddard snapshot

WMAP is a very symmetric differential
Instrument with sufficient frequency
coverage and resolution to understand
foreground emission.

CHFT Image

WMAP observes the sky from L2. The
environment is very stable, and the sun,
moon and earth never enter the field of
View.

(3 10s exposures on CFHT, August 2001)
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The whole sky is shown in Equatorial coordinates with the WMAP observation pattern
In white. The scan pattern covers 30% of the sky every hour, and every circular scan
of the sky crosses all the others providing interconnections at many angular scales.

This is achieved with a fixed angle between the spacecraft axis and the sun!

The dipole pattern on the sky

arises because the solar system

IS not at rest w.r.t the expansion
+4 mK of the universe,

-4 mK -



WMAP Time Ordered Data

WMAP time ordered doto
e

TME (minules)

The CMB dipole provides an hourly calibration monitor.

Ultimate calibration is derived from the annual variation in the dipole as the spacecraft
orbits the sun. Precision is 0.5%.



Sky Map lterations #0, 1, and 10

Initial guess of sky temperature:
t@ = pure dipole

Response after 1 iteration -
note spurious “Galaxy echos”

Response after 10 iterations -
excellent convergence



Maps are inferred from the data by iterative deconvolution. The gain is
determined from the CMB dipole in the same process.

Giain {du/mK}

Hourly gain inferred from the cmb dlpole amplitude.
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Ultimately, the experiment is calibrated against the annual change
In the CMB dipole caused by the earth’s orbital motion around the
sun.
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Fig. 1.— A residual sky map, tout — tin, from an “ideal” one-year simulation of Q2 data, designed to test
the iterative map-making algorithm presented in §2.1. The input sky map included realistic CMB signal
with a peak-to-peak amplitude of ~ £420 K, and a Galactic signal with a peak brightness of ~50 mK. The
rms structure in this map is <0.2 pK, after accounting for the 0.15 pK noise (~ 2 du in the time-ordered
data) that was introduced to the simulation to dither the digitized signal. The map is projected in ecliptic
coordinates and shows the anisotropy mode that is least well measured by WMAP, due to a combination
of the scan pattern and the beam separation angle. This residual level is the result of 50 iterations of the
algorithm — more iterations would reduce it even further.



Table 5. Calibration and Map-Making Error Limits®

DA Co (Ct)s_ 10 (Ci)11_100 Y2 %310  0*¥%|11-100
(bK?)  (uK?) (LK?) (LK?)  (uK?) (LK?)
K1 -21.4 0.6 0.08 42.9 1.1 0.03
Kal 18.5 1.3 0.06 37.0 2.5 0.01
Q1 9.6 1.2 0.14 118.9 2.2 0.01
Q2 7.3 0.9 0.13 14.4 1.6 0.02
V1 3.9 0.6 0.21 7.4 0.7 0.01
V2 -6.1 0.8 0.19 12.6 1.2 0.03
W1 -2.6 1.4 0.49 6.0 2.0 0.10
W2 12.0 0.7 0.62 22.9 04 0.15
W3 4.3 0.4 0.65 7.3 04 0.07
W4 -6.6 3.3 0.90 14.5 5.4 0.55

2All values derived from a one-year simulation of WMAP data. The first
3 data columns give the mean power in the residual map t,,; — tin, from the
simulation. The last 3 columns give an estimate of the systematic error due to
calibration and map-making, as defined in §3.1. For comparison, the average
power in the CMB in each band is Co ~ 130 pK?, (C}),_;, ~ 150 pK?, and
(Ci)11-100 ~ 6 HKZ.
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Figure 1.2: Layout of an Individual WMAP Radiometer. Components on the cold (left)
side of the stainless steel waveguides are housed in the FPA where they passively cooled to
~ 90 K through thermal links to the radiator panels. The components in the RXB achieve

a balance temperature of ~ 290 K.



We test additive and
multiplicative systematic
errors form every stage In
the system by moving
temperatures of each
component up and down
while looking at stable

cold thermal loads before
flight.




WMAP systematic errors are measured in flight to be very small.

Spin synchronous
systematic errors would
accumulate in the maps.

Limits on Spin-Synchronous Environmental Effects®

Radiometer/ Gain Thermal  Voltage
Notice the upper limits for Band nKk nk nk
these effects are measured

In nano-Kelvin. K 6.2 27 4.8
Ka 0.8 2 4.6
Q 15.9 2 7.0
V 0.3 77 37.4
W 0.1 173 9.9

?1o upper limits derived from measured gain and
baseline susceptibilities in Table 8, combined with
upper limits on temperature and voltage fluctua-
tions at the spin period. Sign is preserved for each
radiometer for roll-up by band.
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IFigure 1.6: Five Years Thermal Profile. The measured thermal profile for the cumulative
five years of operation covers 2001:222 (08/10/2001) to 2006:222 (08/10/2006). Expanded
plots and details are shown in Figures 1.7, 1.8, 1.9, 1.10 and 1.11.



Continued Thermal Stability

The pattern of the 200 micro K variation of our primary mirrors has not changed over the
three years indicating that the observatory thermal environment remains excellent. ( The few
100 nK optical signal this variation produces does not sum to a signal in the map due to
WMAP’s symmetrized observation strategy.)

Rotation-averaged mirror-temperature variations over three years.
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The brightest parts of the galactic plane are 1000 times brighter than

the CMB.

However, the WMAP far sidelobe response is so low that the average

pickup in Q,V and W bands is under 1 micro Kelvin.

Sidelobe contamination levels for unpolarized microwave sky maps.

DA Mean Min Max rms fpax max(Cy)
(HK) (vK)  (uK)  (uK) (HK?)
K1 9 17 72 15 6 30
Kal 2 -1.6 9 2 6 0.4
Q1 1.4 4 10 2 2 4
Q2 1.3 4 10 2 2 4
V1 0.3 —2x1072 0.6 0.3 2 3 x107?
V2 0.2 —2x1072 06 0.2 2 2x 1072
W1 -0.12 1.4 1.0 04 4 6x1072
W2 —6x 1072 = 3 0.8 4 0.5
W3 —5x 1072 -3 3 0.8 4 0.5
W4 -0.12 -1.4 1.0 04 4 8x1072




We calculate 28 Cross-power spectra (Q1xQ2, Q1xV1, etc but never W2xW?2).
These 28 measurements of the power spectrum agree, indicating very little galactic
contamination.

Here they are shown one | per bin. The scatter about a smooth spectrum is due to
cosmic variance: there are not enough multlpoles IN our universe to determine their
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We will need to understand our beam shapes very well to

understand our maps. ..
P Overall normalization,

spectral index, tilt and
1 unscrambling matter
densities all rely on
knowing our beam area
and beam shape to high

precision.
1000

The two window
functions are for 0.1 deg
FWHM beams with a
1% difference in solid
angle. Only WMAP has
achieved anything like

' this accuracy.
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Fig. 4.— The ten window functions, w;, computed from the Hermite expansion. The window functions for the two polarizations in each
feed are the same.



Data used in determi

*The main beam sha
of the response to Ju

*There are pre-launc

ning the WMAP beam shapes:

pe Is determined from in-flight measurements
Diter.

N measurements of the near side lobe response

made in the Goddard compact range

*There are far sidelobe measurements made on a rooftop at

Princeton

*There are physical measurements made of thermal distortion and
motion made at Goddard thermal facilities

*\Ve observed the moon during our trip out to L2



Hill et al. 0803.0570

Jupiter > s,

have mor :
YVe have more data (I\/Ieasured)o:

from Jupiter and better
maps of the CMB, (-40dB t0 0.),

which confuse our S
Jupiter maps.

A major improvement 2
Is that we now have  podel € ©
high fidelity models of R
both sides of our
optical system. The
models let us extend
beam integrals beyond  Difference
the angular range of (+/- ~3%) R o W

)

(-40dB to 0)
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