Data analysis:
parameters

Mike Nolta

&

CITA-ICAT

The problem

® Given the data and a theoretical model,
what can we infer about the parameters of
the model?

Notation

P(x|y) : conditional probability of x given y
P(x,y) : joint probability of x and y
related by : P(x,y) = P(x|y)P(y)

Unless otherwise indicated, lowercase
letters are vectors and uppercase are
matrices.

The problem, restated

® Given the data (d) and a theoretical model
H with parameters 0, what is P(0|d,H)?

Bayes theorem

® Since P(x,y) = P(x]y)P(y) = P(y|x)P(x),

P(d|0,H)P(0|H)

P0d, H) = BT

® |nh words,

likelihood X prior

posterior = ,
evidence

VVhat do you mean,
“probability’?

® The true theory parameters are fixed, not
random variables.

® We're quantifying our subjective belief in the
parameters.

® What we know now (posterior) is what we

knew before (prior) and what the data tells
us (likelihood).

Priors

® Typically assume uniform priors, P(0) = |

® Priors only tend to be an issue for

parameters which are poorly constrained
by the data.

® For example: CosmoMC assumes 40 <
Ho < 100, which can alter results when
you don’t assume universe is flat.

Priors (2)

® But note that H(x) and H(log(x)) produce
the same model, but P(x) = | implies

P(log(x)) = x.

® Just be aware that you're usually assuming
uniform priors.

Calculating the likelihood

® Easy,in theory:
—21In P(d|f) = In[det(C)] + d* C~'d + constant

® But slow/impossible for large numbers of
pixels.

® Need approximations...

WMAP TT likelihood

® Approx (l) assume C,are Gaussian:

—2In Py =) (C;—C)Qu (Cr — Cy)

I
® Approx (2) assume C, are log-normal:

—QIDPEN — Z(él — Zl)Qll/(gl/ — Zl/)
[l

® VWMAP approx is a blend:

1 2

Other likelihood approx.

® (C)'3 (Smith, Challinor, & Rocha 2006)
® (x-In(x)-1)"? (Hamimache & Lewis 2008)

Ok, we have P(d|0).

Now what!

Want to know...

® Best fit parameters

® Various expectation values:

(f) = / 46 P(6]d) £ (6)

® For example, f(0) = (ns — (n,))”

Ok, I'll just...,um..., uh oh

Let’s integrate P(0|d) numerically using a grid,
with 20 points along each axis.

Standard LCDM model has 6 parameters.

Need to evaluate P(0|d) 20 = 64 million times.

If each evaluation takes one second, that’s 740
days! Just barely feasible on CITA’s cluster.

With 7 parameters, it'll take 40 years.

Monte Carlo methods

® Generate N random samples 0% from
distribution Q(0):

/d@P Old)f(0) ~ » wif(0)

® We'll discuss various ways to generate
samples: uniform, importance, rejection,
Metropolis-Hastings, and Gibbs.

Uniform sampling

® Sample uniformly in volume Q:

1 0 e,

0 otherwise.

VQ
N

PO"|d), Q(b) {

® Problem: P(0]d) is usually concentrated in a
small volume around the max-like point.

Very inefficient, requiring huge numbers of
samples, unless P is approx uniform over ().

Normalization

In practice, only know P(0|d) up to a
constant, because evidence P(d) is
expensive to calculate.

Define P = P*/Z, where Z is the evidence.

Since |
/dé’ P(Old) = 1 ~ % S P(O]d)

P*(6\")|d)
> Pr(610]d)

In practice, w; =

Importance sampling

® |ike uniform sampling, but with a Q
designed to roughly match P(0|d) (typically
Gaussian).

® Problem:if P(8|d)f(0) is large where Q is
small, may never converge to correct
answer.

Rejection sampling

»
\

>

D. MacKay

® Choose sample from Q, where Q(0|[d) >
P(0|d) for all ©.

® Accept/reject sample w/ probability P(9|d)/
Q(O1d).

Disadvantages

® |mportance and rejection sampling are
prohibitively slow unless Q matches P*
pretty well.

® On the other hand, if you pick the wrong
Q, e.g., if P* falls off more slowly than Q,
you'll get the wrong answer.

® So you have to be conservative choosing
Q, and that slows things down.

Fixed Q is a problem

® Getting Q right implies knowing P* very
well, yet we're running a Monte Carlo
precisely because we don’t know P* very
well!

® Can we “explore” P*!? What if Q was
allowed to vary!?

Markov chain

® A Markov chain is a sequence of random
variables Xo, ..., Xn, Xn+1 such that:

P(xpi1|Tyn,...,x0) = P(xpi1|xy)

® Given the present state, future states are
independent of the past.

® A random walk is an example of a Markov
chain.

Andrei Markov

® |nvented Markov chains in
1906 as a purely theoretical
generalization of independent
trials: P(x,11|zn,...,20) = P(Tpi1)

® Couldn’t (or wouldn’t) think
of a practical example.

World’s first Markov Chain

® Markov (1913) analyzed a sample of 20k
letters from Pushkin’s Eugene Onegin as a
Markov chain, finding:

vowel consonant

vowel 128 872
.663 337 '

consonant

® Possibly inspired by encryption schemes,
such as the “Nihilist transposition cipher”
used by Russian revolutionaries.

Markov chain example: Google

® Consider the “random surfer”, who starts
on a random page, randomly clicks links,
never goes back, and who every now and
then starts on a completely new random

page.

® The probability that the random surfer
visits a page is its PageRank:

PR(A) = (1 —d)

Monte Carlo Markov Chain
(MCMCQ)

¢ MCMC is a technique for drawing samples
00 from P(0]d), and thus:

/d@P 0|d) f Zf (0¢))

Metropolis sampling

® given a point 00) :

® (1) choose new point 0* from proposal

density Q(0%;,00))
® (2) calculate the ratio x=P*(0*|d)/P*(00)|d)

® (3) set 0™H=0* with probability &,
otherwise set it to 00

Physicist ‘Proof’ of MCMC

® Consider a thermodynamic system with
states X and transition rates W(x—x’):

dP t)
2 ZWx%x m,t)%—ZW(x’ﬁx)P(x’,t)

® |n thermodynamic equilibrium dP/dt=0 and
P(X,t) = Peq(X).

® Then by the principle of detailed balance,
W(z — 2')Peg(z) = W (2" — z)Peqg(2')

Physicist ‘Proof’ of MCMC (2)

® We know the equilibrium distribution
(B=1/KT): P.,(x) = e PE®) /7

® Since W<, and assuming E(x’)>E(x),

W(x —) e BlEG)-E@)

W(x' — x) 1

® Metropolis sampling is like simulating a gas
particle in a potential.

MCMC Advantages

® Since we can’t screw up the chain by
choosing a bad Q, we can be very
aggressive in trying to match Q to P*.

® Robust & fast.

Gibbs sampling

® Gibbs sampling is a method for drawing
samples from joint distributions, e.g., P(x,y|
d), if you know the conditional probabilities
P(x|y,d) & P(y|x,d).

® To sample, first take x(*!) ~ P(x|y(),d), and
then y(*1) ~ P(y|x(*1).d).

Convergence

® A MCMC chain is “converged” if its

drawing fair samples from its stationary

distribution, and the chain has explored the
posterior well.

® Unfortunately there is no unambiguous yes/
no test for convergence.

Gelman-Rubin test

= 1) 2@ @)’

t

> (@) = (2.))?/(m —1)

1=1

® Run multiple chains, and check the
intrachain & interchain variance.

- n—1 m+ 1 A 1% df
V? = W A B = —
n mn i W(df—Q)

® R is a prediction for how much better the
chain might get.

In practice

Parameter estimation is a
solved problem

Step |:download CosmoMC (http://
cosmologist.info/cosmomc/)

Step 2: plug in your likelihood code
Step 3:run CosmoMC
Step 4: profit!

http://cosmologist.info/cosmomc/
http://cosmologist.info/cosmomc/
http://cosmologist.info/cosmomc/
http://cosmologist.info/cosmomc/

Choosing the proposal density

® Run a sample chain, compute the
covariance matrix, and then use that for the

real chain.

® Rule of thumb is that acceptance rate
should be ~20%.

Some terminology

® “Burn-in”:The portion of the beginning of
the chain which are not fair samples from
the posterior distribution.

® “Thinning”: throwing away points in the
chain, so that the remaining points are all
independent samples. Typical example:
keeping only every 20 samples.

WMAP parameters are almost
completely automated

® ./runchain.py lcdm+sz+lens/wmap5+bao

® http://lambda.gsfc.nasa.gov/cgi-bin/
chainplot/index.py

® (demo)

http://lambda.gsfc.nasa.gov/cgi-bin/chainplot/index.py
http://lambda.gsfc.nasa.gov/cgi-bin/chainplot/index.py
http://lambda.gsfc.nasa.gov/cgi-bin/chainplot/index.py
http://lambda.gsfc.nasa.gov/cgi-bin/chainplot/index.py

References

® A nice textbook is Information Theory,
Inference, and Learning Algorithms by David |.
C. McKay (Cambridge University Press)

