
Data analysis:
parameters

Mike Nolta

The problem

• Given the data and a theoretical model,
what can we infer about the parameters of
the model?

Notation

• P(x|y) : conditional probability of x given y

• P(x,y) : joint probability of x and y

• related by : P(x,y) = P(x|y)P(y)

• Unless otherwise indicated, lowercase
letters are vectors and uppercase are
matrices.

The problem, restated

• Given the data (d) and a theoretical model
H with parameters θ, what is P(θ|d,H)?

Bayes theorem

posterior =
likelihood× prior

evidence

P (θ|d,H) =
P (d|θ,H)P (θ|H)

P (d|H)

• Since P(x,y) = P(x|y)P(y) = P(y|x)P(x),

• In words,

What do you mean,
“probability”?

• The true theory parameters are fixed, not
random variables.

• We’re quantifying our subjective belief in the
parameters.

• What we know now (posterior) is what we
knew before (prior) and what the data tells
us (likelihood).

Priors

• Typically assume uniform priors, P(θ) = 1

• Priors only tend to be an issue for
parameters which are poorly constrained
by the data.

• For example: CosmoMC assumes 40 <
H0 < 100, which can alter results when
you don’t assume universe is flat.

Priors (2)

• But note that H(x) and H(log(x)) produce
the same model, but P(x) = 1 implies
P(log(x)) = x.

• Just be aware that you’re usually assuming
uniform priors.

• Easy, in theory:

• But slow/impossible for large numbers of
pixels.

• Need approximations...

Calculating the likelihood

−2 lnP (d|θ) = ln[det(C)] + dT C−1d + constant

• Approx (1) assume Cl are Gaussian:

• Approx (2) assume Cl are log-normal:

• WMAP approx is a blend:

WMAP TT likelihood

−2 lnP ∗
N =

∑

ll′

(Ĉl − Cl)Qll′(Ĉl′ − Cl′)

−2 lnP ∗
LN =

∑

ll′

(ẑl − zl)Qll′(ẑl′ − zl′)

lnP ∗
WMAP =

1
3

lnP ∗
N +

2
3

lnP ∗
LN

Other likelihood approx.

• (Cl)1/3 (Smith, Challinor, & Rocha 2006)

• (x-ln(x)-1)1/2 (Hamimache & Lewis 2008)

Ok, we have P(d|θ).
Now what?

Want to know...

• Best fit parameters

• Various expectation values:

• For example,

〈f〉 =
∫

dθ P (θ|d)f(θ)

f(θ) = (ns − 〈ns〉)2

Ok, I’ll just..., um…, uh oh

• Let’s integrate P(θ|d) numerically using a grid,
with 20 points along each axis.

• Standard LCDM model has 6 parameters.

• Need to evaluate P(θ|d) 206 = 64 million times.

• If each evaluation takes one second, that’s 740
days! Just barely feasible on CITA’s cluster.

• With 7 parameters, it’ll take 40 years.

Monte Carlo methods

• Generate N random samples θ(i) from
distribution Q(θ):

• We’ll discuss various ways to generate
samples: uniform, importance, rejection,
Metropolis-Hastings, and Gibbs.

∫
dθP (θ|d)f(θ) ≈

∑
wif(θ(i))

Uniform sampling

• Sample uniformly in volume Ω:

• Problem: P(θ|d) is usually concentrated in a
small volume around the max-like point.
Very inefficient, requiring huge numbers of
samples, unless P is approx uniform over Ω.

wi =
VΩ

N
P (θ(i)|d), Q(θ) =

{
1 θ ∈ Ω,

0 otherwise.

Normalization

• In practice, only know P(θ|d) up to a
constant, because evidence P(d) is
expensive to calculate.

• Define P = P*/Z, where Z is the evidence.

• Since

• In practice,

∫
dθ P (θ|d) = 1 ≈ VΩ

N

∑
P (θ(i)|d)

wi =
P ∗(θ(i)|d)∑
P ∗(θ(i)|d)

Importance sampling

• Like uniform sampling, but with a Q
designed to roughly match P(θ|d) (typically
Gaussian).

• Problem: if P(θ|d)f(θ) is large where Q is
small, may never converge to correct
answer.

Rejection sampling

• Choose sample from Q, where Q(θ|d) >
P(θ|d) for all θ.

• Accept/reject sample w/ probability P(θ|d)/
Q(θ|d).

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

366 29 — Monte Carlo Methods

(a)

x

P ∗(x)
cQ∗(x)

(b)

x

u

x

P ∗(x)
cQ∗(x) Figure 29.8. Rejection sampling.

(a) The functions involved in
rejection sampling. We desire
samples from P (x) ∝ P ∗(x). We
are able to draw samples from
Q(x) ∝ Q∗(x), and we know a
value c such that cQ∗(x) > P ∗(x)
for all x. (b) A point (x, u) is
generated at random in the lightly
shaded area under the curve
cQ∗(x). If this point also lies
below P ∗(x) then it is accepted.

So if we draw a hundred samples, what will the typical range of weights be?
We can roughly estimate the ratio of the largest weight to the median weight
by doubling the standard deviation in equation (29.27). The largest weight
and the median weight will typically be in the ratio:

wmax
r

wmed
r

= exp
(√

2N
)

. (29.28)

In N = 1000 dimensions therefore, the largest weight after one hundred sam-
ples is likely to be roughly 1019 times greater than the median weight. Thus an
importance sampling estimate for a high-dimensional problem will very likely
be utterly dominated by a few samples with huge weights.

In conclusion, importance sampling in high dimensions often suffers from
two difficulties. First, we need to obtain samples that lie in the typical set of P ,
and this may take a long time unless Q is a good approximation to P . Second,
even if we obtain samples in the typical set, the weights associated with those
samples are likely to vary by large factors, because the probabilities of points
in a typical set, although similar to each other, still differ by factors of order
exp(

√
N), so the weights will too, unless Q is a near-perfect approximation to

P .

29.3 Rejection sampling

We assume again a one-dimensional density P (x) = P ∗(x)/Z that is too com-
plicated a function for us to be able to sample from it directly. We assume
that we have a simpler proposal density Q(x) which we can evaluate (within a
multiplicative factor ZQ, as before), and from which we can generate samples.
We further assume that we know the value of a constant c such that

cQ∗(x) > P ∗(x), for all x. (29.29)

A schematic picture of the two functions is shown in figure 29.8a.
We generate two random numbers. The first, x, is generated from the

proposal density Q(x). We then evaluate cQ∗(x) and generate a uniformly
distributed random variable u from the interval [0, cQ∗(x)]. These two random
numbers can be viewed as selecting a point in the two-dimensional plane as
shown in figure 29.8b.

We now evaluate P ∗(x) and accept or reject the sample x by comparing the
value of u with the value of P ∗(x). If u > P ∗(x) then x is rejected; otherwise
it is accepted, which means that we add x to our set of samples {x(r)}. The
value of u is discarded.

Why does this procedure generate samples from P (x)? The proposed point
(x, u) comes with uniform probability from the lightly shaded area underneath
the curve cQ∗(x) as shown in figure 29.8b. The rejection rule rejects all the
points that lie above the curve P ∗(x). So the points (x, u) that are accepted
are uniformly distributed in the heavily shaded area under P ∗(x). This implies

D. MacKay

Disadvantages

• Importance and rejection sampling are
prohibitively slow unless Q matches P*
pretty well.

• On the other hand, if you pick the wrong
Q, e.g., if P* falls off more slowly than Q,
you’ll get the wrong answer.

• So you have to be conservative choosing
Q, and that slows things down.

Fixed Q is a problem

• Getting Q right implies knowing P* very
well, yet we’re running a Monte Carlo
precisely because we don’t know P* very
well!

• Can we “explore” P*? What if Q was
allowed to vary?

Markov chain

• A Markov chain is a sequence of random
variables x0, …, xn, xn+1 such that:

• Given the present state, future states are
independent of the past.

• A random walk is an example of a Markov
chain.

P (xn+1|xn, . . . , x0) = P (xn+1|xn)

Andrei Markov

• Invented Markov chains in
1906 as a purely theoretical
generalization of independent
trials:

• Couldn’t (or wouldn’t) think
of a practical example.

P (xn+1|xn, . . . , x0) = P (xn+1)

World’s first Markov Chain

• Markov (1913) analyzed a sample of 20k
letters from Pushkin’s Eugene Onegin as a
Markov chain, finding:

• Possibly inspired by encryption schemes,
such as the “Nihilist transposition cipher”
used by Russian revolutionaries.

11.5. MEAN FIRST PASSAGE TIME 465

science. For him the only real examples of the chains were literary texts,
where the two states denoted the vowels and consonants.19

In a paper written in 1913,20 Markov chose a sequence of 20,000 letters from
Pushkin’s Eugene Onegin to see if this sequence can be approximately considered
a simple chain. He obtained the Markov chain with transition matrix

(
vowel consonant

vowel .128 .872
consonant .663 .337

)
.

The fixed vector for this chain is (.432, .568), indicating that we should expect
about 43.2 percent vowels and 56.8 percent consonants in the novel, which was
borne out by the actual count.

Claude Shannon considered an interesting extension of this idea in his book The
Mathematical Theory of Communication,21 in which he developed the information-
theoretic concept of entropy. Shannon considers a series of Markov chain approxi-
mations to English prose. He does this first by chains in which the states are letters
and then by chains in which the states are words. For example, for the case of
words he presents first a simulation where the words are chosen independently but
with appropriate frequencies.

REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME
CAN DIFFERENT NATURAL HERE HE THE A IN CAME THE TO
OF TO EXPERT GRAY COME TO FURNISHES THE LINE MES-
SAGE HAD BE THESE.

He then notes the increased resemblence to ordinary English text when the words
are chosen as a Markov chain, in which case he obtains

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRI-
TER THAT THE CHARACTER OF THIS POINT IS THEREFORE
ANOTHER METHOD FOR THE LETTERS THAT THE TIME OF
WHO EVER TOLD THE PROBLEM FOR AN UNEXPECTED.

A simulation like the last one is carried out by opening a book and choosing the
first word, say it is the. Then the book is read until the word the appears again
and the word after this is chosen as the second word, which turned out to be head.
The book is then read until the word head appears again and the next word, and,
is chosen, and so on.

Other early examples of the use of Markov chains occurred in Galton’s study of
the problem of survival of family names in 1889 and in the Markov chain introduced

19See Dictionary of Scientific Biography, ed. C. C. Gillespie (New York: Scribner’s Sons, 1970),
pp. 124–130.

20A. A. Markov, “An Example of Statistical Analysis of the Text of Eugene Onegin Illustrat-
ing the Association of Trials into a Chain,” Bulletin de l’Acadamie Imperiale des Sciences de
St. Petersburg, ser. 6, vol. 7 (1913), pp. 153–162.

21C. E. Shannon and W. Weaver, The Mathematical Theory of Communication (Urbana: Univ.
of Illinois Press, 1964).

Markov chain example: Google

• Consider the “random surfer”, who starts
on a random page, randomly clicks links,
never goes back, and who every now and
then starts on a completely new random
page.

• The probability that the random surfer
visits a page is its PageRank:

PR(A) = (1− d) + d
∑

T→A

PR(Ti)
C(Ti)

Monte Carlo Markov Chain
(MCMC)

• MCMC is a technique for drawing samples
θ(i) from P(θ|d), and thus:

∫
dθP (θ|d)f(θ) ≈ 1

N

∑
f(θ(i))

Metropolis sampling

• given a point θ(i) :

• (1) choose new point θ* from proposal
density Q(θ*;θ(i))

• (2) calculate the ratio α=P*(θ*|d)/P*(θ(i)|d)

• (3) set θ(i+1)=θ* with probability α,
otherwise set it to θ(i)

• Consider a thermodynamic system with
states x and transition rates W(x→x’):

• In thermodynamic equilibrium dP/dt=0 and
P(x,t) = Peq(x).

• Then by the principle of detailed balance,

Physicist ‘Proof’ of MCMC

dP (x, t)
dt

= −
∑

x′

W (x→ x′)P (x, t) +
∑

x′

W (x′ → x)P (x′, t)

W (x→ x′)Peq(x) = W (x′ → x)Peq(x′)

• We know the equilibrium distribution
(β=1/kT):

• Since W≤1, and assuming E(x’)>E(x),

• Metropolis sampling is like simulating a gas
particle in a potential.

Physicist ‘Proof’ of MCMC (2)

W (x→ x′)
W (x′ → x)

=
e−β[E(x′)−E(x)]

1

Peq(x) = e−βE(x)/Z

MCMC Advantages

• Since we can’t screw up the chain by
choosing a bad Q, we can be very
aggressive in trying to match Q to P*.

• Robust & fast.

Gibbs sampling

• Gibbs sampling is a method for drawing
samples from joint distributions, e.g., P(x,y|
d), if you know the conditional probabilities
P(x|y,d) & P(y|x,d).

• To sample, first take x(i+1) ~ P(x|y(i),d), and
then y(i+1) ~ P(y|x(i+1),d).

Convergence

• A MCMC chain is “converged” if its
drawing fair samples from its stationary
distribution, and the chain has explored the
posterior well.

• Unfortunately there is no unambiguous yes/
no test for convergence.

• Run multiple chains, and check the
intrachain & interchain variance.

• R is a prediction for how much better the
chain might get.

Gelman-Rubin test

R̂ =
V̂

W

(
df

df − 2

)

W =
1
m

m∑

i=1

s2
i =

1
m(n − 1)

∑

t

(xit − 〈xi.〉)2

B/n =
m∑

i=1

(〈xi.〉 − 〈x..〉)2/(m − 1)

V̂ 2 =
n− 1

n
W +

m + 1
mn

B

In practice

Parameter estimation is a
solved problem

• Step 1: download CosmoMC (http://
cosmologist.info/cosmomc/)

• Step 2: plug in your likelihood code

• Step 3: run CosmoMC

• Step 4: profit!

http://cosmologist.info/cosmomc/
http://cosmologist.info/cosmomc/
http://cosmologist.info/cosmomc/
http://cosmologist.info/cosmomc/

Choosing the proposal density

• Run a sample chain, compute the
covariance matrix, and then use that for the
real chain.

• Rule of thumb is that acceptance rate
should be ~20%.

Some terminology

• “Burn-in”: The portion of the beginning of
the chain which are not fair samples from
the posterior distribution.

• “Thinning”: throwing away points in the
chain, so that the remaining points are all
independent samples. Typical example:
keeping only every 20 samples.

WMAP parameters are almost
completely automated

• $./runchain.py lcdm+sz+lens/wmap5+bao

• http://lambda.gsfc.nasa.gov/cgi-bin/
chainplot/index.py

• (demo)

http://lambda.gsfc.nasa.gov/cgi-bin/chainplot/index.py
http://lambda.gsfc.nasa.gov/cgi-bin/chainplot/index.py
http://lambda.gsfc.nasa.gov/cgi-bin/chainplot/index.py
http://lambda.gsfc.nasa.gov/cgi-bin/chainplot/index.py

References

• A nice textbook is Information Theory,
Inference, and Learning Algorithms by David J.
C. McKay (Cambridge University Press)

